Ashtech Z-Xtreme RTK / TDS Ranger - Survey Pro CE Version 3.2.1 - Sales Support Document

RTK Demo - TDS Mapping Plane with known WGS84/NAD83 – State Plane Coordinates & Geoid Model

Pre-load all the project's NAD83 control point's coordinates, create and transfer the necessary Geoid model over to the Ranger.

Setup RTK Base Station on known WGS84 / NAD83 Control Point Measure the HI of the RTK Base Station.

On the TDS Ranger, start the TDS Survey Pro CE software by double-tapping on the Survey Pro icon, or from the Start | Programs | Survey Pro menu...

The TDS Survey Pro CE logo / splash screen will be displayed...

After a few seconds, the Logo / Splash screen will close automatically.

To manually close the Logo / Splash screen, simply tap anywhere on the screen.

Figure 2

The Welcome to Survey Pro dialog menu...

Select the "Create a New Job" menu, tap the New... button,

The next screen...

Create a New Job	Cancel
Directory: \Disk\Survey Pro Jobs\	
Job Name: RTK-Demo2	
<u>B</u> rowse	
	<u>N</u> ext >

Input a name for the New Job: RTK-Demo2

Next, Tap the $\underline{N}ext > button...$

The next screen...

Create a New Job		Cancel
Azimuth Type:	North Azimuth	•
Units for Distances:	Meters	•
Units for Angles:	Degrees	•
☐ <u>A</u> djust for Earth Cur	vature / Refraction	
Use Scale Factor:	0.999950903	
	N	ext >

Select the Options as shown above

Next, tap the $\underline{N}ext > button...$

The next screen...

Create a New Jo	Cancel	
_F Enter First Point: —		
Point Name:	1	
Northing:	2155433.442	
Easting:	3588212.211	
Elevation:	89.949	
Description:	RTK BASE	
	< <u>B</u> ack <u>F</u>	inish
Figure 5		

Enter the RTK Base points known NAD83 State Plane Coordinates, Next , Tap the **<u>F</u>inish** button...

To add additional points select, [2] Job – [B] Edit Points menu then select <u>Insert...</u>

ß RTK-Demo2 12 ſ A Settings 1 File 2 Job **B** Edit Points **C** Edit Polylines 3 Survey 4 Stakeout **D** Edit Alignments 5 Inverse E Auto Linework 9 9 Figure 6

The next screen...

From the Survey Pro CE main menu, Tap on **[2] Job – [A] Settings** menu...

The next screen...

Settings			OK Cancel
< General	Receiver	•	Meas. Mode >
Brand: Model:	Receiver Meas. Mode Projection Post Process Units Format		v
GPS Mode:	Format Files Surveying Stakeout Date/Time General	6	▼

In the **Settings** menu, Tap on the center Pull-Down menu... This is the Primary Settings Pull-Down menu for the Survey Pro CE software. The basic flow-chart of the Settings menu, work your way down through the menu, Top to bottom...

Tap on the Down-Arrow, select Receiver...

The next screen...

Settings		OK Cancel
< General	Receiver 🔽	Meas. Mode >
Brand:	Ashtech	•
Model:	Z-Xtreme	-
GPS Mode:	RTK	•
	<u>R</u> eceiv	er settings

Select the Options as shown above:

Next, Tap on the **<u>Receiver settings...</u>** button,

The next screen...

GPS Re	ceiver Sei	ttings		OK	Close
Receiver	Base Radio	Rover Radio	Ge	neral	
Brand:	Ashtech				
Model:	Z-Xtrem	e			
RTK Correction Format: DBEN					
	inications: — Port (Data Co	llector):	CON	41	
Serial I	Port (GPS Red	teiver):	А		
Baudra	ite: 96	500			_
Parity:	N	one 📘	<u>C</u> ha	ange	╧┛╽

Select the Options as shown above:

Next, Tap on the Base Radio tab...

The next screen...

GPS Re	ceiv	er Set	ttings		ОК	Close
Receiver	Base	e Radio	Rover	Radio	Genera	Ŋ
Radi	io Ma	dem:	Pac Ci	rest	[•
-Serial Baudr Parity Serial	ate: :	9600 None B		Con	ifigure Se	erial
Radio Chanr Sensit	nel:	Ō		Conf	îgure <u>M</u> o	dem

Figure 10

Select the Options as shown above:

Next, Tap on the General Tab...

The next screen...

GPS Re	ceiver Sei	ttings	ОК	Close
Receiver	Base Radio	Rover Radio	General	
Elevatio	n Cutoff:	10 c	legrees	
Canopy:	:	Open sky		⊡
Confider	nce Leval:	99.9 %		▣
Reset—	<u>S</u> et Rx.	to OFF mode		

Figure 11

Select the Options as shown above:

When finished verifying the GPS Receiver Settings – Tap **OK...** This will return you to the **Settings** Menu...

Next, Tap on the Center Pull-Down menu, select Measure Mode...

The next screen...

Settings		0)K Cancel
< Receiver	Meas. Mo	ode 🔻 Pr	ojection >
Receiver Dynai	mics: Stat	tic on occupy	•
Store GPS Raw	/ Lat,	Lng, Ht (EP)	-
Accept: Fixed I	RTK only	Epochs Average	e: 1
Use Accept	ance Criteria	1	
H RMS: 0.03 r	m m	PDOP: 6	
V RMS: 0.05 r	m m	Auto Ac	ccept: 🔽

Next, Tap on the Center Pull-Down menu, select Projection...

The next screen...

Settings		OK	Cancel
< Meas. Mode	Projection	▼ Post I	Process >
r ^{Projection T}	ypes: ———		
Horizontal:	Mapping Plane		-
Vertical:	Geoid Model		-
Path to Data	a Files:		
\Disk\TDS (Geodata\	B	rowse

Select the Options as shown above:

After selecting the Projection "Mapping Plane", in the **Job** | **Settings** menu, for the demo, Tap **OK**, this will return you to the Survey Pro CE Main menu...

Next, Tap on the **[3] Survey - [F] Projection** menu Select the actual parameters for the Mapping Plane...

RTK-Demo2	F 🗖 🔽		
1 File	C Rover Setup		
2 Job	D Control Points		
3 Survey	E Data Collection		
4 Stakeout	F Projection		
5 Inverse	G Remote Elevation		

The next screen...

Figure 14

The next screen...

Projection		Settings	Close
Horizontal Vertical			
Mapping Plane:	UNSOLVE	D	
Region: Coordinate System: Datum: Zone: Hemisphere:			
[Mapping (Plane <u>S</u> etu	ір

Figure 15

Initially, the Projection will report **UNSOLVED**, to establish the Mapping Plane, from the Horizontal Tab, Tap on the **Mapping Plane** <u>Setup...</u> button,

Mapping Plane Set	Lip Cancel
Region:	J.S.A. (NGS)
Coordinate System:	State Plane 1983 💌
Horizontal Datum:	NAD 1983 🔽
Zone:	Virginia North 💽
	Einish

Figure 16

In this example, the RTK Demo will utilize NAD83 Virginia North - State Plane coordinates. Select the appropriate **ZONE** (State - Zone) for your demo.

When the Region, Coordinate System, Horizontal Datum, and Zone have been selected, Tap on the \underline{Finish} button.

The next screen...

Projection	Settings Close
Horizontal Vertical	
Mapping Plane:	SOLVED
Region: Coordinate System: Datum: Zone:	U.S.A. (NGS) State Plane 1983 NAD 1983 Virginia North
	Mapping Plane Setup

The selected Projection – Horizontal Mapping Plane is displayed.

Next, Tap on the Vertical tab...

The next screen...

Projection	Setting	s Close
Horizontal Vertical		
Geoid Modeling:	Geoid model sele	ected
Model: I	NGS Geoid 99/96	I
Base station needs to be set for geoid model use. Elevations will be calculated relative to the base station.		
	Geoid Model S	etup

Tap on the **Geoid Model <u>Setup...</u>** button Select the Geoid Model: NGS Geoid96/99

The next screen...

Geoid Model Set	up	Close
ſGeoid Model: ───		
Geoid Model:	NGS Geoid 99/96	
	<u>A</u> cce	ept

Figure 19

Next, Tap on the <u>Accept</u> button...

The TDS Survey Link software supports creation of a Geoid Sub-Grid suitable for use in the field with the Ranger data collector. The Geoid model data can be computed in Geoid96, EGM96 or the newest Geoid Model – Geoid 99.

See the Technical Support Notes on how to create a Geoid Sub-Grid using TDS Survey Link software.

When the Job's Horizontal and Vertical Projections selections have been made, Tap on the **CLOSE** button, this will return you to the Survey Pro CE main menu,

At this stage of the demo, the TDS Ranger needs to be connected to the Base RTK receiver. Both of the GPS receivers should be powered ON and tracking satellites. The PDL Base Radio should also be powered ON.

Measure the GPS Antenna Heights for the RTK Base GPS Antenna and the RTK Rover GPS antenna.

Next, Tap on the [3] Survey – [A] GPS Status Menu

RTK-Demo2		
1 File	A GPS Status	
2 Job	B Base Setup	
3 Survey	C Rover Setup	
4 Stakeout	D Control Points	
5 Inverse	E Data Collection	

Figure 20

GPS Status	Close
Receiver Data Link Post	t Process Sky View 💶 🕨
Receiver: Mode: Off Memory: 12887 KB	Satellites: Used: 05 Locked: 06
Battery: 12 %	Reset Ambiguities
Position Quality: Solution: Autonomo	ous
H. Precision: 0.990 V. Precision: 1.510	HDOP: 1.40 VDOP: 2.10
	PDOP: 2.50

The GPS Status screen confirms you have established communications between the TDS Ranger and the RTK base Receiver.

Notice the Receiver Mode: **Off**, this indicates the GPS receiver is still in STATIC mode, configure the GPS Receiver for RTK Base mode.

Note the Receiver is already tracking and using 6 Satellites.

Next, Tap on the Sky View tab...

The next screen...

Figure 22 Next, Tap on the CLOSE button,

This will return you to the Survey Pro CE main menu...

Next, Select tap on the [3] Survey – [B] Base Setup menu...

RTK-Demo2			
1 File	A GPS Status		
2 Job	B Base Setup		
3 Survey	C Rover Setup		
4 Stakeout	D Control Points		
5 Inverse	E Data Collection		

The next screen...

Current GPS B	ase Statior Settings Close
Base Point:	
Base	Base is not set:
Base	
Base Longitude:	
Base Height:	
r ^{Antenna}	
<u>S</u> etup	[]

Figure 24

Tap on the **Setup** ... button,

Base Setup	Settings Cancel
🕂 Base Point: 🔣 1	
	Choose from list Choose from map
Last antenna for this receive Antenna: Geodetic IV -GP:(P Measured To: Slant measur	Show point details Zoom to point
Measured: 1.486 m	Setup <u>H</u> R
Radius: 0.100 / Offset: 0.016	
	<u>N</u> ext >

Figure 25

Tap on the Down-Arrow and select – Choose from list...

The next screen...

Select Pe	oint	OK CI	ose
Point	Description	Northing (m)	Ea
+ 1	RTK BASE	2,155,433.442	З,
•			▶

Tap/Select Point 1, RTK Base with the known SPC83 Northing, Easting and Elevation.

Next, Tap the **OK** button...

Base Setup		Settings Cancel
+ Base Point:	1	T
-Selected Antenna Antenna: Geodetic Measured To: Slar Measured: 1.549 Radius: 0.100 / Of	nt measure mar 5 m	
		<u>N</u> ext >

Figure 27

Tap on the **Setup** <u>H</u>**R** button...

The next screen...

Base Receiver Antenna Cancel				
Antenna Type: Geodetic IV -GP:(P/N 701975-0				
Measure To: Slant measure mark 💌				
Measured:	1.545 m	Serial 585	0	
Radius:	0.1 m			
Offset:	0.016 m	Notch: 1		
Set				

Select the Options as shown above:

The Antenna Type: Geodetic IV -GP: (P/N 701975-01). *The* -GP = No *Ground plane*. In this example, The RTK Base GPS Antenna is mounted to a wooden tripod/Tribrach. The HI Flag = Slant measure mark. Enter the Slant HI, measured to TGP (Top of Ground Plane), Units = Meters.

Measured HI = 1.545 m Serial Number for the GPS Antenna = 5851

When finished with the data entry, Tap Set...

Base Setup		Settings Cancel
+ Base Point:	1	
Selected Antenna Antenna: Geodetic Measured To: Slar Measured: 1.54 Radius: 0.100 / Of	nt measure mar 5 m	· · · · · ·
		<u>N</u> ext >

This returns you to the Base Setup menu...

Next, Tap on the $\underline{N}ext > button...$

Base Setup	Sett	tings Cancel
Base Point: 1		
Latitude:	39°03'45.13601"	N
Longitude:	77°28'50.71102"	w
Ellipsoid	57.834 m	
	< <u>B</u> ack	<u>S</u> ET

Figure 30

Note the Latitude, Longitude and Ellipsoid Height position. This is the Real-World geodetic WGS84 position. The displayed Geodetic position is derived from the RTK Base point's Northing, Easting and the selected **Survey** | **Projection** parameters.

Compare the displayed WGS84 position with the Data Sheet, or the known WGS84 position; verify the WGS84 positions match. This is your "In-the-Field" check that the RTK Base station is properly setup. If the WGS84 Positions does not agree, verify the RTK Base Point Number, coordinates and Survey Projection settings.

If the WGS84 position agrees - Tap on the <u>Set</u> button.

Figure 31

Tap **Reset** button, this function will re-start recording of raw data in the Receiver's PC Card memory, will the latest Post-Processing configurations.

Base S	Setup	Settings Cancel
Base F	Point: 1	
TdsRt	k	
⚠		tly not set as a base le setup. Press cancel to <u>C</u> ancel
	<	Back <u>S</u>ET

The next screen...

Figure 32

This is the "Trigger" that switches the receiver from STATIC MODE into RTK BASE MODE. The receiver is now configured as a RTK Base, the PDL Base Radio should now begin to Transmit RTK corrections out to the RTK Rover(s)...

Current GPS B	ase Statior Settings Close	
Base Point:	1	
Base	Base station location:	
Base	39°03'45.13601" N	
Base Longitude:	77°28'50.71102" W	
Base Height:	57.834 m	
Antenna Measured: 1.545, Radius: 0.100 / Offset: 0.016 Measured to: Slant measure mark		
<u>S</u> etup	<u>C</u> lose	

Figure 33

This is the known WGS84 position of the RTK Base station, This is the position and DBEN data the PDL Base radio will broadcast to the RTK Rover(s). Tap on the <u>Close button...</u>

This will return you to the Survey Pro CE main menu...

Disconnect the TDS Ranger from the RTK Base Receiver, Connect the TDS Ranger to the RTK Rover Receiver.

Tap on the [3] Survey – [C] Rover Setup menu

RTK-Demo2		
1 File	A GPS Status	
2 Job	B Base Setup	
3 Survey	C Rover Setup	
4 Stakeout	D Control Points	
5 Inverse	E Data Collection	

Figure 34

The next screen...

Rover Setup	Settings	Cancel
Rover Status: Rover is not set		
∟Base set at: 1		
Lat: 39°03'45.13601" N	Height:	
Long: 77°28'50.71102" W	57.834	m
GET from Base	<u>S</u> ET R	over
Last antenna for this receiver: Antenna: Geodetic IV -GP:(P/N 70 Measured To: Bottom of mount Measured: 2.0 m Offset: 0.059	1975-01) Setup	HR

Figure 35

Note the Rover Status: **Rover is not set**, the RTK Rover equipment needs to be configured. Observe the Base point number and WGS84 position, visually confirm this is correct.

DO NOT tap Set Rover yet - Configure the RTK Rover Antenna Parameters first,

Tap Setup <u>H</u>R

Rover Recei	ver Antenna	Cancel
Antenna Type:	Geodetic IV -GP:(P/N 70197	5-0 🔻
Measure To:	Bottom of mount 💽	
Measured: 2	.0 m Serial <mark>585</mark> 2	2
Offset:	.059 m	
	Set	

Figure 36

Select the following parameters:

Antenna: Geodetic IV –GP: (P/N 701975-01 Measure To: Bottom of Mount Measured: 2.000 m Serial 5852

When you have enter the RTK Rover Antenna parameters, Tap the **Set** button...

The next screen...

Rover Setup	Settings Cancel
Rover Status: Rover is not set	
rBase set at: 1]
Lat: 39º03'45.13601" N	Height:
Long: 77°28'50.71102" W	57.834 m
GET from Base	<u>S</u> ET Rover
Selected Antenna Antenna: Geodetic IV -GP:(P/N 70 Measured To: Bottom of mount Measured: 2.0 m Offset: 0.059	1975-01)

Figure 37

When the antenna parameters for the RTK Rover have been determined, Tap on the **<u>SET Rover** button...</u>

Figure 38

Tap Reset button, this function will open a new file. Recording raw data in the Receiver's PC Card memory, will the latest Post-Processing configurations.

The next screen...

Rover Setup Settings Cancel
Rover Status: Rover is not set
-Base set at: 1
TdsRtk
This receiver currently not set as a rover Press OK to continue setup. Press cancel to quit.
<u>OK</u> <u>C</u> ancel
Measured: 2.0 m Setup <u>H</u> R
Offset: 0.059

Figure 39

This is the "Trigger" that switches the receiver from STATIC MODE into RTK ROVER MODE. The receiver is now configured as a RTK Rover.

This will return to the Survey Pro CE main menu...

Select [3] Survey – [A] GPS Status

The next screen...

GPS Status	Close
Receiver Data Link Post Process Sky View	
Battery: N/A	Reset Ambiguities
Position Quality: Solution: Fixed H. Precision: 0.011 V. Precision: 0.015	HDOP: 1.40 VDOP: 2.10 PDOP: 2.50

Figure 40

Receiver Tab – note the Receiver mode: **Rover** Position Quality is **Fixed**, Satellites Used: 5

The next screen..

GPS Status		Close
Receiver Data Link	Post Process	Sky View 🔹 🕨
Receiver Mode: R	over	
Radio Reception: — Signal Latency: 0. Reception: 100		
Position Quality: — Solution: Fixed H. Precision: 0.01 V. Precision: 0.01	D HDOP:	2.00

Figure 41

Data Link Tab – this screen display's Radio Reception and Position Quality information.

GPS Status	Close
Receiver Data Link	k Post Process Sky View 🜗
Status: Recordi i _r Recording:	ng: no session
Site ID:	????
Interval: Remaining:	5.0 sec No session
Free Memory:	14680 KB
DOPs: HDOP: 1.20 VDOP: 2.00	Satellites: Used: 6 Locked: 8

Figure 42

Post Process Tab – Indicates Status for any post-processing Data recording: SITE ID, Interval, DOPs, Satellites

The next screen...

Sky View tab – displays location of satellites relative to Antenna.

GPS Status	Close
Post Process Sky View S	iat Info Position 🔳
SNR Plot SV List	SV Control SV 1 Disable SV
20 11 22	Enable SV Enable ALL
14 06 21	

SNR Plot tab – displays SNR (Signal to Noise Ratio) plots.

The next screen...

GPS Status Close
Post Process Sky View Sat Info Position
Position: North: 2,155,436.210 East: 3,588,207.771 Elev: 89.883
Solution: Fixed
Heading: 0°00'00 " Speed: 0.013 km/h

Position tab – displays current Real-Time coordinate and Solution quality, If the Mapping Plane has been Set, coordinates are displayed. If Geodetic Position (Latitude, Longitude, Ellipsoid Ht) are displayed, the Mapping Plane has not been set; return to the **Survey** | **Projection** menu and define. The RTK Base and Rover are now configured, continue the demonstration by collecting some Data Collection, perhaps performing some Stake-out...

Select [3] Survey – [E] Data Collection

Figure 46

The next screen...

Data Collect	ion	Settings Cl	ose
Fix Rad	Radio: 100% SV: 06 HRMS:0.01		
Point:	3	~	Input
Description: 🖡	WATER_Valve		
Rover: 2.0 m	to:Bottom of	mount	Result
Setup <u>H</u> R	Occupy: Pos <u>T</u> Process	<u>C</u> ontrol Point	
Occupy:	Offset	<u>P</u> oint	Map

Figure 47

Physically occupy the point of interest, in this example the top surface of a Water Valve lid found in the parking lot. Select the Description for the desired feature, when the RTK Rover pole is plumb and level – Tap on the **Point** button to "Take-the-Shot".

Figure 48

Enter a Description from the Pull-Down Menu, type the first letters of the description. If the user created and copied a descriptor file (Codes.txt), over to the Ranger; a Dropdown menu will automatically appear, exposing the descriptors list. Browse the list and select the topographic code.

To associate a Descriptor file to the Job: Job | Settings | Files | Description Files:

Note the Status-Bar in the top portion of the display, The Status-Bar will always indicate the Fix/Float indicator, Radio Reception %, Number of SV's and HRMS.

Data Collect	ion		Settings	Close
Rac	lio:	SV:	HRMS:	
Survey Pro				
Receiver move ar	•	s set to	static. Do not	:
		<u>)</u> K		
Cccupy:	POS <u>T</u> PIC	JCESS		
Eeature	Offse	et	<u>P</u> oint	שו

The next screen...

Figure 49

The program warns to user – the Receiver Dynamics are set to Static. This is a reminder: "Do not move antenna", during the collection process.

Settings Cancel
8
Count Status
Measuring
GPS <u>S</u> tatus

Live screen displaying Coordinates and Solution Quality during Data collection, typically when you observe a **Fixed Solution** and have desirable Horizontal and Vertical Precisions – tap the <u>Accept</u> button.

Occupy Data Points	Settings Cancel
Local Coordinates: Northing: 2,155,420.151	
Store GPS Point	ОК
L Description: WATER_Valve	
Feature: <none></none>	Attributes
V. Precision: 0.002	J
<u>A</u> ccept	GPS <u>S</u> tatus

Figure 51

Survey Pro CE allows the user to append the Description if necessary. This Featured can be turned off by the user.

GPS Staking

Note: to perform any Stakeout functions, the Stake-out Point's: Point Number, Northing, Easting, Elevation and Descriptions MUST be Pre-loaded into the Ranger, before any stake out work can be started. Typically, these coordinates are pre-loaded into the Ranger back at the office.

The Customer may have calculated these coordinates with a COGO software, or the coordinates may have been generated from a design, or drawing file.

The coordinates for Control Points and the Design (Stake-Out) points MUST be on the same coordinate system. That is, the points used on the job site for the Control MUST be on the same coordinate system as the Design Points.

RTK-Demo2			
1 File	A Stake Points		
2 Job	B Stake List of Points		
з Survey	C Stake to Line		
4 Stakeout	D Offset Staking		
5 Inverse	E Slope Staking		

Select [4] Stakeout – [A] Stake Points

Figure 52

Stake Points	Settings Close
+ Design Point: 🔀	
Increment: 0	Choose from list Choose from map
	Show point details Zoom to point
Rover: 2.000 to Bottom of	mount
Setup HR	<u>S</u> olve >

Figure 53

Tap on the Pull-down Arrow, select **Choose from list...** Select Point Number -3...

The next screen...

Stake Points	Settings Close
🕂 Design Point: 🔣 🖥	_
Increment: 0	<u>N</u> ext Point >
Rover: 2.000 to Bottom of mour	nt
Setup HR	<u>S</u> olve >

Figure 54

After the Stake Point selection, Tap on the Solve button...

Stake Points	Settings Close		
Design Point: 3			
Description: WATER_Valv	e		
Design Location:	[]		
Northing: 2,155,429.705			
Easting: 3,588,223.372	■ ³ WATER_Va		
Elevation: 90.095	н		
Rover: 2.000 to Bottom of mount			
Setup HR	ack <u>S</u> take >		

Figure 55

The selected Points Design Coordinates are displayed,

Next, tap on the **Stake >** button...

The next screen...

The Azimuth and Distance to the Stake-out point are displayed.

When Staking-out with RTK, it takes a little while to get use to the flow of things... When performing Stake-out with Total stations, the Instrument person back sights a reference point, turns an Angle-Right to direct the Rodman for line, then shoots a distance to determine the distance towards the gun, or distance away from the gun to stake the point's location. With RTK systems, there are not these types of survey crew deployments. The RTK Base station is typically un-attended, it sits there all by itself. The two-person survey crew is working with the RTK Rover system. One person to carry and operate the RTK Rover system, the second person to carry the wooden stakes, Lath or guard stakes, the sledge hammer and the project's design plans.

To orientate Stakeout directions on the job site with the RTK Rover, Survey Pro CE allows the user to select from two types of orientation on the job site:

Reference Direction: 0° 00' 00000" (Geodetic North), the surveyor can utilize a compass to determine orientation on the job site.

Reference Point: Select any physical point on the job to be used for Orientation.

The next screen...

Figure 57

Tap on the **Reference: 0° 00' 0000"** button, the display will Change to **Reference Point:**

Figure 58

Then tap on the Pull-Down menu and select Choose from list...

The next screen...

Figure 59

Se	Select Point OK Clo					
Po	int	Description	Northing (m)	Ea		
\mathbf{x}	1	RTK BASE	2,155,433.442	З,		
+	2	WATER_LN	2,155,436.003	З,		
+	3	WATER_Valve	2,155,429.705	3,		
+	4	WATER_Valve	2,155,430.645	З,		
+	5	WATER_Valve	2,155,430.651	З,		
+	6	WATER_Valve	2,155,420.151	З,		
+	7	WATER_Valve	2,155,419.953	З,		
•				Þ		

Figure 60

In this example, Point number 1 (the RTK Base) was selected for the Reference point.

The next screen...

Figure 61

After selecting the Reference Point, tap OK

Figure 62

Direction and Distance with visual cues - to the Stakeout Point are are presented, with the Reference Point 1, the RTK Base station .

Navigate towards the Design Point, this is live screen. If your Navigating in the right direction – the distance should decrease. If your navigating in the wrong direction, the distance will increase...

The next screen...

Figure 63

The Distance is decreasing – your getting closer...

The next screen...

Figure 64

When you get within a meter of the Design Point, The scales of the GPS Staking screen will enlarge, Providing greater detail to stakeout the point...

Figure 65

When you get within a few decimeters, the scale is enlarged once again.

When you arrived at the Design Point, Tap **Done**, The next screen...

Stake Points		Settings Close
Design Elev: 90.095 Change	Results: Azimuth: Distance FILL:	
HR:	2.059	
Shot Data: Northing: 2,155,429.7 Easting: 3,588,223.3 Elevation: 90.082		Sto <u>r</u> e
GPS Status	< <u>B</u> ack	Stake <u>N</u> ext >

Figure 66

To accept the "AZ-Built" Shot Data, Tap Store...

The next screen...

:	Stake Points	S	ettings Close
D 9	esign Elev: Stake Out Poin	Results: – Azimuth t	126002'19 OK Cancel
	Point:	8	_
	Description: FLD-3		
	Feature: <none></none>	At	tributes
E	Elevation: 90.082		Sto <u>r</u> e
[<u>G</u> PS Status	< <u>B</u> ack	Stake <u>N</u> ext >

Figure 67

A Description can be appended to the Stake Out Point...

The **"FLD-3"** Description can be used to store the AZ-Built Coordinates, where the FLD-3 = Field coordinate for design 3. This type of description can help locate the Cut/Fill data.

Figure 68

Points in the current job file can be viewed by tapping on the **View Map** icon...

The next screen...

Point Details	5	Close
Point	2	
Description	WATER_LN	
Feature	None	
Layer	Points	
N	2,155,436.003	m
E	3,588,214.028	m
z	89.934	m
Lat	39°03'45.21841" N	
Lng	77°28'50.63427" W	
Ht	57.819	m
Түре	Existing Pt.	

Figure 69

Tap on a point in the **View Map** display, the **Point Details** Will be displayed...

Tap **Close** to return to the View Map... Tap **Close** to return to the Survey Pro CE main menu... Advanced Data Collection: Collect continuous data by Time –or- Distance filters:

Select [3] Survey – [E] Data Collection

The next screen...

Data Collec	tion	Settings	Close
Fix Ra	adio: 100% SV: 08	HRMS:0.0:	
Point:	8	•	Input
Description:	FLD-3		
Rover: 2.0 m	to:Bottom of i	mount	Result
Setup <u>H</u> R	Occupy: Pos <u>T</u> Process	<u>C</u> ontrol Poin	t 🐼
Cccupy:	Offset	<u>P</u> oint	

Figure 70

Specify the Description, then Tap **Feature...**

The next screen...

Feature Collection Close			
Points to Be Stored:			
Starting 9			
Description: Profile-1			
Method: Cts. by time			
Interval: 2 sec.			
You will be prompted for description and attributes for the first point. Continuous points will be stored with the same values.			
Update Rate: One Hz 💌 <u>S</u> tart			

Figure 71

Select Method: Cts. by Time –or- Cts. by Distance, In this example Cts. by Time / 2 Second Interval has been selected. When ready to begin, Tap <u>Start...</u>

Occupy Data Points	Settings Cancel
Local Coordinates: Northing: 2,155,429.726 Easting: 3,588,223.357 Elevation 90.080	
Solution Quality: Solution: Fixed Num. SV: 8 H. Precision: 0.009 V. Precision: 0.013	Epochs: 4 Count Status Measuring
Accept	GPS <u>S</u> tatus

Figure 72

To start the Continuous Data Collection mode, the user must manually accept the first shot, Tap <u>Accept...</u>

The next screen...

Inverse Point to Multiple Poi	nts	Close
🛈 Inverse Point: 🕅 🤋		
Enter a Description	ОК	Close
Enter a description or press the down a select from a list: Profile-1	rrow ti)
Solve		Map

Figure 73

An opportunity is provided to append the Description, Tap **OK**, or press Enter on the Ranger keyboard...

Once the initial shot has been Accepted, the continuous Data Collection mode will begin, in this example **Cts. by Time / 2-Second Interval** was selected. If the conditions of the HRMS/VRMS filter are met, the Ranger will beep every 2-seconds, indicating data collection is occurring. Start walking the feature you desire to data collect / map.

The next screen...

Figure 74

Example of Profile Line collected with the Continuous Data Collection Mode.

To Export coordinates:

Figure 75

Export Coordinates	Close
Select the Points to Export:	
0 points selected	
Тар Points То/From н 💌	
Select the Type of File to Export:	
🔿 Job (.JOB) File	
Old Job (.JOB) File (Compatible with Survey Pro 1.x and 2.x)	
Coordinate (.CR5) File O Text (.TXT) File Next	>
Figure 76	

Tap on the Down Arrow...

The next screen...

Export Coordinates				
Select the Points to Export:				
19 points select	ted 🔨			
Tap Points To/F	-rom 📝			
Select the Type of File	Select all points			
🔿 Job (.JOB) File	Clear all points			
Old Job (.JOB) File				
(Compatible with	Select all non-control points			
Coordinate (.CR5)	Select by description			
O Text (.TXT) File				

Figure 77

Tap on the Select all Points option...

Export Coordinates	lose
CR5 File Options:	
Sequential	
O Non-Sequential	
[]	_
<pre>< Back Export</pre>	

Choose Sequential -or- Non-sequential option...

Tap the **Export** button...

The next screen...

Figure 79

Specify a Name and File -Type Extension for the Export Coordinates...

Next, Transfer the Coordinates from the Ranger back over to the office Computer,

RTK-Demo2	
1 File	C Import Coordinates
2 Job	D Export Coordinates
з Survey	E Backup / Restore
4 Stakeout	F Transfer
5 Inverse	G Register Modules
$\square \blacksquare$	

Figure 80

The next screen...

The next screen...

Tra	insfer			Close
Con	necting to: 🚺	/indows (PC	-
	_[Communicati	ons Setti	ings: ———	
	COM Port:	COM 1		<u> </u>
	Baud	38400		- E
	Parity	None	•	
	LEr	nter Serv	er Mode]
	Send F	ile	Receive File]

Figure 81

Select the Transfer Communications Settings,

Start the TDS Survey Link software on the PC,

Start | Programs | TDS Survey Works | Survey Link...

From the Pull-Down menu \rightarrow Select **Transfer** | **Send** / **Receive...**

Select the **Receiver Tab...**

Transfer	×			
Send Receive				
Which Data Collector or Total Station Is Used: TDS Data Collector - CE (Ranger and Pocket PC) 💌				
Output				
Store Coord. File (.cr5) As: 💿 Sequential 🔘 Non-sequential 🔲 Archive raw data				
Get File Name from Data Collector or PC				
Store In: C:\DATA2002\Alexandria\RTK-Data				
Choose Directory				
File Name:				
Choose File				
Note: Use this to get a file from your Data Collector or Total Station.				
Hint: Set your Data Collector into 'Send' mode.				
Receive Close Stop Setup Help				

Figure 82

Last Updated by RDL: 9/10/02